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A new set of polynomial functions that can be used in spectral
expansions of C= functions in polar coordinates (r, ¢) is defined
by a singular Sturm-Liouville equation. With the use of the basis
functions, the spectral representations remain analytic at the pole
despite the coordinate singularity because the pole condition is
exactly satisfied at the origin for al) azimuthal modes, not just a few
of the gravest modes (which is the usual case). Based on recurrence
relations, fast and stable numerical operators for 1/r, r(d/dr), the
Laplacian and Helmholtz operators and their inverses are devel-
oped. Although the spacings in the azimuthal direction of the collo-
cation points near the origin are small (i.e., & 1/M?, where M is
the number of radial modes), the explicit numerical method for
Euler's equation is not stiff at the origin. Namely, the CFL number
o is O{1) where the grid size in ¢ is defined as #/M (i.e., the
maximum allowable timestep is proportional to 1/M, not
1/M?).  © 1995 Academic Press, Inc.

1, INTRODUCTION

In cylindrical and spherical coordinates the coordinate singu-
larity can decrease the accuracy or computational efficiency of
the spectral method. Orszag [1] used Fourier series with the
pole conditions imposed at the coordinate singularity. However,
a severe time step restriction can occur in this method. Robert
[2] and Merilees [ 3] imposed the exact pole conditions explicitly
onto the expansion functions. Although a fast transform can
be used for this family of methods [4], their basis functions
are nearly linearly dependent [5, pp. 493-496] and the accuracy
deteriorates as the number of coefficients becomes large [3].

Recently, Eisen et al. [6] mapped the unit disk onto a rectan-
gle and imposed pole conditions. Huang and Sloan [7] used
differential equations to construct pole conditions. Although
they could solve the Poisson-type problems successfully, we
believe that with their expansion functions and pole conditions,
the time step restriction problem that arises for advection prob-
lems due to the increased reselution near the coordinate singu-
larity [5, pp. 480-482] cannot be avoided. One way to avoid
the time step restriction problem is to use a Fourier filter in
the azimuthal direction as used by Fornberg and Sloan [8] and
Fornberg [9]). They used Chebyshev expansion in the radial
direction on [—1, 1] over the coordinate singularity instead of
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on [0, 1]. Their method avoids the time step restriction problem
and gives a good result for a simple linear advection problem.
However it 1s not clear how much the unsatisfied pole condition
will affect the results for more complicated applications.

In spherical coordinates the spherical harmonics are an exam-
ple of an orthogonal basis set which treats the coordinate singu-
larity correctly. They have been popular in spherical geometry
[5, 10]. In polar coordinates Bessel functions act as the analogue
of the spherical harmonics. However, although Bessel functions
behave correctly near the coordinate singularity, they are not
free of the Gibbs phenomena at any finite outer boundary. In
this paper we present a family of complete orthogonal sets of
polynomials which satisfies the pole condition exactly. The
polynomials satisfy a differential equation singular at the outer
boundary and converges spectrally on the interval [0, 1]. As
an application, we combine these polynomials with the Fourier
modes to form a basis set which converges spectrally on the
unit disk in polar coordinates.

2. THE POLYNOMIAL SET

We seek a spectrally accurate method for representing a 6~
function f(r, ¢) over the unit disk. When f(r, ¢) is represented
as a Fourier series in ¢,

frndy= 3 fulrie™, (m

the pole condition is that f,(#) behaves as OG- %) as r — 0
for an nonnegative integer p [6]. The goal of the paper is 1o find
basis functions for representing £, (r) so that the pole condition is
maintained, the defining differential equation is singular [11]
at the outer boundary so that the basis functions are free of the
Gibbs phenomena there, and the weight function is suited for
cylindrical or spherical geometry. Also orthogonal polynomials
are desirable for the basis functions because they satisfy three
term recurrence relations and are easy to manipulate.

As a defining differential equation which satisfies these re-
quirements, consider the singular Sturm-Liouville equation
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defined over 0 =< r = |, 0 =< |m| = n, where m and n are
integers, 0 << o = 1, and S is a positive integer. Equation (2)
has ath-degree polynomial solution if # + m is even and the
Frobenius series about r = 0 can be used to write the solution
¥y = ", B; 1 in closed form,

(n~lmyi2
O, B:1) = 2
=0
(= 1yrrorber (n+|ml+—1 . p)
r{-”’l'*zﬂ’

n—|m 2lm|l+8+1
pt (—QU—p)!l—'(lmlfB-l‘p)

2m| +y— 1
F( 2 )

where y = 2 + . If mis even, QF (e, 3; r) is an even function
of r and if m is odd, Qy{w, B; r) is an odd function. For r —
0, Qi(a, B; r) behaves as O(rI") and Q7{cx, B; r)e™ in polar
coordinates (r, ¢) satisfies the pole condition exactly. The
OMw, B; r} are complete and orthogonal with respect to the
weight function

8

W(Od, Bin= (1+)’25T:1

@
so that
[ Qe B: Q3 B: (e B 1) dr = 2 BB (5)

where §,, is the Kronecker delta. A recurrence relation for the
integration constant I, B) will be derived later. Given {(e,
B), we can form orthonormal functions,

Br(er, B; 1) = (Iae, B)) 2 Q(ex, B: 1. (6)

The D{e, B; r) can be used to expand a scalar functicn on
the unit disk D = {{r, ¢)|0 = r = 1,0 = ¢ < 27} in
polar coordinates

for ) =2, E frdn(a, B; re™, )

n=0 m=-n
m+neven
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where f7 are complex expansion coefficients. Note that f(r, ¢)
is ‘6* on D because of the correct polar behavior of ®7(e, 8;
r). The coefficients f' are found by

fr = [ L 1 6308 s et B3 ) dr dh. ®)

The spectral convergence (i.c., faster than algebraic) of expan-
sion (7) to a function f(r, ¢) € €% on D can be shown by
using the differential equation (2) with (8). Integratmg twice
by parts with respect to r, we obtain

n =

1
* 2+ 2+ B —1) f¢:ﬂ ero (9)
X h(r, §)P(e, B; rye ™twia, B 1) dr do,

where

hir, ) = (1_*.@ d ((1 )8 d_f)
rf dr

el + 8- 1)

’,.2

(10)
b

Substitution of rFe™® in f(r, ¢) shows that h(r, ¢) preserves
the pole condition if f(r, ¢) satisfies the pole condition exactly.
By repeating the integration by parts, we can prove the spectral
convergence of the partial sums in Eq. (7) to f(r, ¢).

Within the allowed values of « and 3, some particular choices
are of interest. If ® = 1 and 8 = 1, the weight function reduce
to w(l, 1; r} = r and it agrees with the weight function for the
physical integration on the unit disk. In this case, setting m =
0 and applying the change of variable x = 2r? — 1 reduces
Eq. (2) to the Legendre equation,

L
2(2+])y—0

Thus Q%1, 1; r) is related to P,»(x), the Legendre polynomial
of degree n/2, by

—(1 —xz) (1)

Pop(x) o< Q3(1, 1; V(1 + x)/2). (12)

Also, for arbitrary integer m the Q7(1, 1; ) is related to the
shifted Jacobi polynomial P{*(y} used by Lecnard and Wray
[12] by the relation Q7(1, 1, ) & rMPO™(2r2 — 1), They used
POm¢2r? — 1) as an element to construct Galerkin type diver-
gence free vector basis functions.
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Ifa = 5and 8 = 1, the weight function becomes w(3, |}
¥}y = r/V'1 — r% In this case the change of variable

x=V1=, (13)

transforms (2) to the associated Legendre equatton, Thus 7
(%, 1; r) is related to P7(x), the associated Legendre function
of order m and degree n, by

Pr(x) o« O0(3, 1, V1 — x%) (14)

for 0 = x < 1. Because we have defined O™, 8; ) only for
the case where n — |m| is even, only even associated Legendre
functions are related to O7(2, 1; r). The odd associated Legendre
functions will not have bounded derivatives at ¥ = 1 because
dridx is zero there. We note that x = 0 is a regular point of
the associated Legendre equation while the corresponding point
# = 1 1is a singular poins of (2).

Ifoe = 1 and 8 = 2, the weight function becomes w(l, 2;
r) = r?. As we will show in Section 5.1, this choice of &
and # is suited for basis functions in the radial direction in
spherical coordinates.

In Section 5.1, pumerical experiments are carried out with
parameters & = 1, g and 8 = 1, 2 for the Bessel and spherical
Bessel eigenproblem. Based on the results, the cheice & = 1,
B3 = 1 will be used to solve the vorticity equation in Section 5.2.

3. NUMERICAL PROCEDURE

We discuss the procedures to evaluate ®7(r) and to find f7
in Eq. (7) numerically. We suppress the arguments a and 8
of O%w, B; 1), @M, B; A, I, B), and w(w, 8; r) and use
v = 2« + 8 for brevity. First we derive some useful formulas.
The Qr(r) satisty for n = |m|

r 4 (Q20) = 02 400 = nQID) + (n +y = DO, (19)

where Of,-2(r) = (1. Equation (15) can be verified easily by
the substitution of (3). Using (15) to reduce the order of Eq.
(2), we obtain

(1 =P 0

2(ﬁ""2+|m|(|’”|+ﬁ—1)+n(n+v—/3~2>

204y -3 )Qm

+(n—fm[+’y—,8—2)(n+|m|+y—3)
2n+7y-—3

o afr).
(16}
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Using (13) again we may eliminate the differential term to yield
—(n — || + 2)(n + | + B+ D20 + 1y ~ 3OFLA)

+2n+y—1{2n+y—3C2n+y+ Dr?
—2n(n +y— 1) = 2m{lm| + B - 1)

(7
= (y = 3B + D}
—n—|ml+y-B-—2n+mt+y—3)
X (20 + v + DO™AF) = 0.
The Q7(r) can be evaluated as follows. By setting n = |m]
and n = |m| + 2 in Eq. (3} we obtain
Qfu(ry = r¥ (18)
oo @ty =D (2Amty 1, ) ;
Qhjalr) = 2 (2lml T8+ 1 ri=1]0kn. (19

With these starting values, we can stably evaluate QF(r) for
higher values of n by the recurrence relation (17). The recur-
rence relation for normalization coefficient /™ can be obtained
by applying (17) to (5) and using the orthogonality of Q7(r),

1m=(Zfl'f"y*s)(}’l_'m'«l»'y—ﬁ_zxn_i_Jm‘+_y_3) i
n (fl_ "’7’1“(”‘F [m[-*rﬁ— 1)(2n+')’—’ 1) -2
(20}

where the starting value I7, can be computed by (18} and (3),

I - + 1
it £ () (s 25, e

Next, we consider the numerical evaluvation of f7 defined by
Eq. (7). Consider the partial sum approximation fi(r, ¢) to
f(r, ¢) for an even integer M,

]
o= D frdir)

(22)
=
M-1
ulr @)= 2 funemt=1(r. ). @3

where M =M — 1if misodd and M = M — 2 if m is even.
If we choose M = 27, where p is a positive integer, the standard
fast Fourier transform can be used with (23) to find f,(#). The
inverse transform of Eq. (22) is

fr= [, frOse) dr 4
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We now derive a Gaussian quadrature formula for (24) to
compute f77 efficiently. First, note that the product f,(rDy(r)
is an even polynomial whose degree is at most 2M — 2. The
Lagrange quadrature formula [13, p. 402] for (24) is

M2

o @R dr =3 fur) PR+ E, - (25)

where r; are the abscissas of the quadrature, E is the error of

the formula. Here we assume that 00 = p| << o0 < oy = 1.
The weight w; is
_ 7' (1) vy .
w, = (1/(—2r ,)) Jo e w(r) dr, 26)
where
M2
w(r) = H (- rh. 27)

=1

By construction, the formula (253) is exact or £ = 0 if the
degree of the product f{r)®Mr) is less than or equal to
M~ 2. Now dividing f,(n®Z(r) by w(r), we can write
[Py = s(r) + 7(rg(r), where s(r) and g(r) are even
polynomials of degree at most M — 2, Substituting this expres-
sion into (25) and observing that s(r;) = f.(r)d0(r) for 1 =
i = M2, we obtain

E= f(') 7 (Dg(rw(r) dr. (28)

Thus if we choose w(r) = O%(r), by orthogonality E vanishes
identically and the coefficients £ can be computed exactly by
(24} and (25) when fi(r, ¢} is equal to f{r, ¢). Thus the abscissas
of the Gaussian quadrature correspond to the positive zeros of
%(r). The zeros of O%(r) need to be computed numerically.
The weight coefficients w; of Gaussian quadrature can be
evaluated as follows. First we write (17) with m = 0 as

roNr) _
N 10

C,-
nea(r) + DR Q) + a1,

o
1112

(29)

where

_ )+ B+
C"‘(2n+y—1)(2n+y+1)' (30)

The D, is not important here and the definition is not given.
Multiplying (29) by Q%p), subtracting the same equation with
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r and p exchanged and summing over n = 0 to n = M for
even n, we obtain the Christoffel-Darboux formula [13]

E Qﬂ(r}Q;’(p) Cy (Q?m(r)QRf(p) ~
p=0

0 0
Io QM(")QMH(P)) . @3n
M

rﬁ_p2

peven

Replacing p by r;, using @%(+) = 0, multiplying both sides of
(31} by Q%(r)w(r), integrating from zero to one with respect to
r, and using (29) with r = r;, we obtain

0
L=

QM(") w(r) dr =

or’ Cu2QhoAr) 2

Combining (32) and (26} with 7(r) =
we obtain the formula for w,,

O%(r) and using (16},

20M + vy — 3l —r)
M+y—B8—2DM+y— 3y APh_ ()

(33)

w; =

In the collocation method, a quadrature point is desirable at
the boundary to impose the boundary condition. In this case,
the Gauss—Radau quadrature can be used {13]. The appropriate
choice of 7(r) is

M+y—B-2M+y—3)
MM+8-1)

7(r) = Ou(r) — Qh—(r),  (34)

where 7(r) is designed to satisfy (1) = 0. The weight coeffi-
cients for 1 = i = M/2 — I are given by

o 22M +y — 5)r
CMAty - B )M+ y = 3D (r))

(35)

which can be obtained in a similar way as (33) was obtained
by using (31) and 7(r;) = 0. The weight coefficient w,,,; corre-
sponding to ry, = 1 can be computed by the relation

Mi2=1

(36}

W = J0 _
Mi2 1()
=i

Because the degree of f,(ryP7(r) is the same as the degree of
w(r)g(r) in (28), it is seen by the form of (34) that the Gauss—
Radau quadrature is exact only if the degree of f,,(n®(r) is
equal to or less than 2M — 4. To obtain the desired degree of
precision 2M — 2, the number of abscissas is increased by one.
Then the degree of precision of the quadrature becomes 2M.

Products of two functions can be computed efficiently by
using the /2 abscissas of the Gaussian quadrature or the M/2
+ 1 abscissas of the Gauss—Radau quadrature as collocation
points. Dealiasing can be done by the usual 3/2°s rule [5,
pp. 268-276].
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To perform the numerical integrations, we need to store the
values of Q2(r) at each collocation point. This requires O{M")
words of memory and this is the largest memory requirement
for a typical two-dimensional calculation. However, we note
that the same situation occurs when one uses the associated
L.egendre functions for spherical harmonics. Transforms (22)
and (25) are essentially matrix multiplications and are not as
efficient as the fast Fourier transform. However, fast transform
{15] can be applied to our basis functions if the matrices are
sufficiently large. The application of multipole expansions [16]
1s an alternattve for the pseudospectral method.

4. OPERATORS

In order to compute derivatives and other operations inexpen-
sively, recurrence relations are desirable. We present recurrence
relations for the elementary operators 2, r(d/dr), and their
inverses. Then we show the recurrence relation for the Helm-
holtz operator and a procedure to solve for its inverse. Let

w

g} = D, arQnn 37
rien
and for some linear operator L,
Lg,(r) = Z b O, (38)

n+m 3\'5“

Here for later convenience we assume that a” = 0 for n > M,
where M is defined in the same way as in Eq. {22).

Consider L = r(d/dr). Substituting (37) into (38) and using
{15) recursively, we obtain

=nay+Qan+y—1) E ay
p+n"ete2n

(39)

Shifting the index n in {(39) to obtain b7, and eliminating the
summation term, we obtain the recurrence formula for L =
rldidn),

2nty—1
2n+y+3

(2n+‘y—-l)(n+~y+l)
2nty+3

m =
n

bn.-(—'l

ﬂ+'.’. + nan

(40)

The b; can be solved backwards numerically and stably with
the starring value b, = 0. A backwards recurrence relation
for the inverse of r(d/dr) can be obtained by solving (40) for
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ay. This recurrence relation is also numerically stable with the
starting value aj., = 0, except for the indeterminate coefficient
aj. This term serves as the integration constant implicit in
{r(didr).

If L = r?, using (17) and (37) with (38) we obtain for n = |m],

(n = |mor -+ |m| + B — l)
Cr+y—3C2r+vy-—3)
2n(n+y—1)+2{m1([m[+ﬁ~1)+(~/ 3)(3+1)
2rn+y—3C2n+y+1)

+(n_|m|+y-,8)(n+|m|+'yﬁ l)a"‘
Qn+y+3H2n+y+ 1 e

m—

(41)

where af,.; = 0. It v = 3 and r = m = 0, the second term
on the right-hand side is taken as (8 + 1)/(y + La7. With
Eq. (41) we can compute b7 for |m| = n = M + 2. A backwards
recurrence relation for the 1/r? operator can be obtained by
solving {41) for a?_,. Starting values are a¢ff, = 0 and afj., =
0. However, this recurrence is numerically unstable. The af
can be computed stably and inexpensively by solving (41) with
a tri-diagonal LU decomposition without pivoting. Here it is
important that the function represented by by behave as
O(rI"+ 15142y a5 r 5 0, where p is integer; otherwise, the resulting
g»(r) can behave poorly near the coordinate singularity.

We now consider L = r2H, where H is the Helmholtz operator

H—iz— ld n?

dart  rdr r* “2

where x is some constant, Note that L can be written as L =
(+(d/dr))* — m* — kr? so that the operators constructed above
can be exploited. Substituting (37), (39), and (41) into (38),
we obtain for n = |m|,

b= —mar+ 2n+y— 1)

w

X 22 (n + pyag + 2 @2pty-1H 22
p=nt g=pt

ptneven p+n even g+peven

B K{(n — [mDn + |m| + B — D
Cn+y—35)2n+y-3) "

L2ty - D 2mi(ml + BT+ G =B D n
2r+vy—3)2n+y+ 1D

(n—JmJ-f"y B)(n+|m|+'yl)a+2} @3

Crn+y+3)2an+y+ 1)
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where afy_; = 0. After some shifting of indices, we can elimi-
nate the summation terms to obtain

- 1
br Cat+ty+5Qu+y+D

X {2(2n ty=DRr+y+ Db — @ty — D2+ y+ Db

m
n-2

_K(n—|m|)(n+|m|+[3—1)(2n+'y+5)(2n+'y+7)
2n+vy—=52n+y—3)

+ [(n — |mpin + |m)2r + vy + H2n+y + 7

2n+y+7
an+y-3

2y = B+ 4m|(jm| + B— D+ (y =3B+ 1))] ar

44
+ 22+ y - DR2a+y+ D+ (y+3hn+mi +y+ 1) (“44)
+ k(2 + 20y + 3n + 6m|(lm| + B — 1) + (y — DGB — v + 2lag
+ li(n“}m[+'y+3)(n+ lm|+ vy +3H2n+y—D2r+y+ 1)
k22T 22ty — Byn =l + B = 1)+ (v + 1@y = 38+ 3) | az
2n+y+9 m
_ K(n —iml+y =B+ D+ |ml+y+3Cn+y—D2n+y+ l)am
Qu+y+92n+y+1D) e
. [x x x x LI
where apy > = 0. f y = 3 and n = m = 0, the factor that
muitiplies to af is taken as —«(y + 7)}(8 + 1). Solving for X X X X X
b7 backwards with starting values bjj., = 0 and b, = 0, we <« X X X X
can compute r:Hg,(#) stably. Coefficients for Hg,(r) can be A
found by using the 1/r* operator, X X X X
A backwards recurrence relation for the inverse of r*H can X X X
be obtained by solving (44) for a,. If k = 0, we solve for
ay 1o obtain the recurrence relation. However, the former is [ x xj|
unstable for all m and the later becomes unstable as m| in-
creases. We now present a numerically stable procedure to solve x X x = x [
X X X X X X
HEa(r) = ho(r) 4s) x X x X X B
X X X X ,
. . - X X X
for g,(r), where h,(r) is a polynomial of degree at most M.
Here we seek N = (M — |m|}/2 + 1 nonzero coefficients for L X X L
gn(r) by the tau method. For clarity, we consider the case N =
6. Without boundary conditions the equation r*Hg,,(r) = r’h,{r) L
in matrix form in accordance with (41) and (44) is (46)



SPECTRAL METHOD FOR POLAR COORDINATES

where x denotes a nonzero element and A and B are column
vectors whose elements are 4y, %2, ... & and b,
blisa, <., by from top to bottom, respectively. The &7 and &)
represent the coefficients of the functions g.(r) and &, (7). The
hat ~ is to account for the fact that we have not imposed the
houndary condition. The second matrix on the right-hand side
(T) represents the operator r? given in (41). The matrix on the
left-hand side (L) and the first matrix on the right-hand side
(S) represents the operator r2H given in (44). By writing R =
ST, we can write Eq. (46) as LA = RB.

Let A be the column vector of coefficients affy, afuiz, .o
ay of g, (r) that satisfy (46) or {45) subject to the constraint of
a boundary condition of the form

c-A=s @7

For examptle, the Dirichlet boundary condition at r = 1 is

represented by ¢; = Qhpg-nlr=1 forl =i =< Nand s =

g.(r = 1). Using a tau method to impose (47) requires A

to satisfy

(RT'L)A =B + 7z, (48)

where z is the column vector z; = dy and 7 is determined from

(47). We note that a modified tau method of the form

LA=RB+ 1z (49

is not equivalent to (48); the solution to (49) leads to large
errors near the boundary and should not be used.

To solve (47) and (48) efficiently and stably, we define the
auxiliary matrix L' to be equal to L. with the exception that a

new tow [1, 0, .., 0] is added to the top of the matrix and the
bottom row is cast off; ie., for 1 =j = N,

Li=L_;, 2=i=N,

(50

The matrix L is penta-diagonal. It can be stably inverted with
an LU decomposition without pivoting. We also define the
column vector Y equal 10 RB with the modification that the
bottom element is moved to the top; i.e.,

N
Y= R-;B, 2=i=N,

i=1

g (51
MEZM@.

Then

A=A+ 7G, + G, (52)

371

where A is the column vector (L')"Y, G, is the column vector
(G, = (LY, G, = (LY'G,, and G; is the column vector
(G3), = Ry for 2 = i = N with (G;), = Ryy. The 1y and =, are

7= [V~ F-A)e-Go) — (F-Ga)(s — e A)V/£ (53)
7=[(s — ¢-ANF- G, — Ry) — (- G)(Y, — F-A)/§  (54)

with
£=(F -G, — Rye -Gy} — (F-Go)e-G) (55)

and F is equal to the last row of L. Note that if A is to be found
repeatedly for different values of B, then in a preprocessing step
L' is decomposed into its LU factors. The factors are stored
along with the values of Gy, G, F, (F-G)), (F-G,), (¢-Gy),
(c-Gy), and & Each evaluation of A requires O(5N) operations
to find Y, O(5N) operations to find A from Y, O(2N) operations
to find 7, and 7, and O(N) to compute A from (52). Thus we
can solve the Helmholtz equation Hg,(r} = h,(r) for g.(r) in
O(13N) operations.

5. EXAMPLES

5.1. Bessel Function Figenproblem

In this section we discuss the problem of choosing appro-
priate & and 8. We consider the Bessel function eigenproblem

ld d&v mw
rdr dr 0T Ay (56)
and the spherical Bessel function eigenproblem
dy +
1d ,dy_mim+1) =My (57

,
rPdr dr P

on [0, 1], where we assume that m = 0. Although our main
interest lies in polar coordinates, the spherical Bessel functicn
eigenproblem is considered in order to show the importance of
choosing a correct weight function. In (56) and (57} our bound-
ary conditions are the boundedness at the origin and y(1) = 0.
The selution to (56) is the mth-order Bessel function J,(r,, R,
where r,, is the nth zero of J,(r) and the eigenvalue is A,, =
rh,. They are orthogonal with respect to the weight function
w;(r) = r. The solution to (57) is the spherical Bessel function
FubFmat} = NV TI2r D nnrimt), where r,, is the nth zero of
J.(r) and the eigenvalue is A,, = r,>. They are orthogonal with
respect to the weight function w(r} = . Because both J,(r)
and j.(r) behave as O{r™) as r — 0, it is appropriate to expand
y{r) as

| 421
yu(r) = ZW a,Qn (e, Bs 1.

ptmeven

(58)
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The matrix representing (56) follows directly from (43) with
& = 0 and the matrix for (57) can be constructed similarly.
For expansion (58), only y,(1) = 0 is imposed explicitly by
the tau method. Expansions by @21, 1;n.Q%3, 1:0),
071, 2; r), and Q7(3, 2; ¥) are considered to investigate the ef-
fects of the values of @ and 3.

As a counterexample, we also solve (56) and (57} following
the procedure of Gottlieb and Orszag [11, pp. 152-153] by
representing y(r) as

M

y(r) = > b,T,(r), meven, (59)
poven
M+1

yulr) = E. b,T,(r), modd, (60)
p=
podd

where T,(r) is the Chebyshev polynomial of degree p. The
boundary condition y,(1) = 0 is imposed for all . In addition,
a *‘pole condition’ is applied for m = 2 at the origin: (dvu/
dr)|=o = 0 if m is odd and yu(0) = 0 if m is even. The tau
method is used to impose these conditions. The number of
cocfiicients is the same for (38}, (59), and (60) and is equal to
M2+ 1.

The smallest eigenvalue of the Bessel eigenproblem (56)
was found numenically for m = 0, m = 7, and m = 49 for
several values of M and the fractional errors in the computed
eigenvalues are shown in Fig. 1. We note that a similar result
is obtained if we examine larger eigenvalues instead of the
smallest one. The figures show that the eigenvalues for expan-
sion with & = 1 and 8 = 1 converges faster than those with
other values of @ and . This behavior becomes less obvious
for m = 49, but the convergence for 07(1, 1; r) becomes no
worse than other expansions. On the other hand, another choice
of ex and /3 gives the fastest convergence for the spherical Bessel
eigenproblem. In Fig. 2 we plot the fractional errors in the
computed eigenvalues to the smallest exact eigenvalues of the
spherical Bessel eigenproblem (57) for m = 0, m = 7, and
m = 49 for several values of M. The behavior is similar to that
of Bessel eigenproblem, however in this case Q7(1, 2; r) expan-
sion gives the fastest convergence. These results show that it
is desirable to choose 3 according to the natural dimension of
the problem to obtain the best result. The figures also suggest
that the choice a = 1 always gives a faster convergence than
a = 3

Figures 1 and 2 also show that the Chebyshev expansion
works as well as other expansions for m = 0. However, the
convergence deteriorates significantly as m becomes large. This
can be understood by the fact that the oscillatory part of the
Bessel function moves towards the outer boundary as m in-
creases and the fanction becomes tougher to resolve accurately
for the Chebyshev expansion. On the other hand, the oscillatory
part of Q7(r) behaves similarly with the Bessel function as m
increases and the exponential convergence is maintained even
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FIG. 1. Fractional error Err in computed eigenvalue to the smallest exact
eigenvalue A = 578318596295 of Bessel eigenproblem with m = 0 {(a), A =
122.907600204 of Bessel eigenproblem with m = 7 (b), and A = 3144.17045658
of Bessel eigenproblem with m = 49 (2).

for m = 49 with a relatively small number of coefficients. The
behavior of the Bessel function is common to many problems
for which the physics at the coordinate singularity is no different
from other parts of the domain. In such cases the solution will
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FIG. 2. Fraction error Err in computed eigenvalue to the smallest exact
eigenvalue A = %.86960440109 of spherical Besse] eigenproblem with m =
0 {a). A = 135.886399537 of spherical Bessel eigenproblem with m = 7 {b),
and A = 3202.99085698 of spherical Bessel eigenproblem with m = 49 (¢).

satis{y the pole condition naturally and better performance of
the Q7(r) expansion is expected. Thus the QF(r) expansions
have some advantages over the Chebyshev expansion for large
m even though Orszag [1] and Boyd [14] have suggested that
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the exact pole condition is not necessary for eigenvalue prob-
lems and boundary value problems.

Based on the results in this section, we will use & = | and
£ = 1 in the next section where we solve the vorticity equation
in polar coordinates.

5.2. Vorticity Equation

In this section we apply our method to a stimple yet practical
problem, the vorticity equation in two dimensions,

d
2o u-Vo,
ot

(61)
where the velocity u = {(u,, u,) satisfies the incompressible
continuity equation V-u = 0. The w(t, r, ¢) = (L/r)(3/ar)
(rugy — (1/r)(du./o¢) is the vorticity {17]. We introduce the
stream function Yz, r, ¢) such that uw = (—(1/rayd/ ady), (dy/
dr)) and write the right-hand side of (61) as

1

J(l,lf,w)E—-u-Vm:?( dw _ a—“’ﬁ“—”) (62)

Tarse | arod

The vorticity is related to # by (7, r, &) = V' Our domain
is the unit disk D = {(r, $) |0 =r = 1,0 = ¢ < 27} and the
boundary conditionisu, = 0at r = loryit, r = 1, &y = Q.
Both i and @ are expanded in the form of (22) and (23) and
the initial conditions are prepared as the expansion coefficients
of @7(r). The J(ifr, w) are computed as follows. The r(a/dr)
(see (40}) and 9/9¢ are applied to ¢ and o in function space
and the resulting four functions are transformed to the physical
space. Then the values of J{(i4, w) are computed at each colloca-
tion point by simple multiplications. Because neither Gauss--
Legendre nor Gauss—Radau quadrature points include the ori-
gin, division by #* can be carried out straightforwardly. Here,
it is important that the multiplication of 1/#* in (62) is carried
out in physical space. Otherwise if one transforms 2/, w) to
function space and uses the inverse of the recurrence (41), the
result will behave poorly near the coordinate singularity because
after the dealiasing the function will no longer be divisible by
r? exactly. Once J(, w) is found, the vorticity at new time
step can be found by using a time integration method and the
stream function can be found by the procedure to invert the
Helmholtz operator in Section 4 with xk = 0.
To illustrate the absence of the stiffness problem, we consider
an initial vorticity distribution configured as a vortex pair
wolx, ¥) = Glx + 0.25, ¥} — Glx — 0.05, y), (63)
where G(£ m) is a gaussian G(&, n) = 100 exp(—32(& + )
and x = r cos ¢ and y = r sin ¢ Vortices are arranged
asymmetrically. The solution is such that each vortex circulates
in the disk with a half-moon shaped trajectory and the vortex
with negative vorticity goes over the coordinate singularity
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TABLE I

The CFL Number ¢ and Fractional Changes in Several Conserved
Quantities at ¢+ = 10 from the Initial Values

At o I rugr dr dep I [Wiir dr ag Iy or dr dop
0.001 0.18 —1.1 X 1077 —1.0 x 107 ~29 X 1072
0.002 .36 -3.2x10° —1.1 x 107 ~29 X 107
0.004 0.72 31 X W77 —1.5 X 1§73 —3.0 %X 107?
0.008 1.44 — — —

Note, The third 10 fifth columns are the fractionak changes of angular momen-
tum, energy, and enstrophy.

periodically (the period is approximately two in nondimensional
time). We use M = 64 to expand  and @ in the form of (22)
and (23) with & = 1| and 8 = 1. The coefficients for n >> 2M/3
are used for dealiasing. Equation (61) is integrated with a second
order leap-frog method up to t = 10 with several values of
time step At and a hyperviscosity type small scale dissipation
was used.

Fractional changes in several conserved quantities at ¢ = 10
are shown together with the CFL number o corresponding to
Ar in Table I. The CFL number is defined as ¢ = Ay
21rr¢ Ax based on the circulation of vortices [T'] = 100m7/32,
the characteristic radius r; = 1/V/32 and the characteristic grid
size Ax = a/M ~ 0.049. Note that the grid size near the
coordinate singularity is O(zr /M) and if this value is used for
Ax, o will be O(1/r)) ~ 27 times larger. The calculation is
stable up to At = 0.004 but unstable for Ar = 0.008. Although
the exactinviscid solution conserves all three quantities in Table
I, they are not conserved exactly in our calculation primarily due
to the small scale dissipation. However, the fractional errors
are small and do not change quadratically as At is varied. Thus
the time integration error is seen to be small even for Ar =
(.004, In terms of the CFL number this upper limit of Ar is
reasonable and we observe no significant time step restriction
in our method.

In our computation, a large fraction of CPU time is spent
for the radial and azimuthal transform to compute J(if, ).
The time to invert Laplacian to find ¢ is not significant. The
inefficiency of the matrix multiplication compared to the fast
Fourier transform is a relatively minor problem for moderate
size of M because only O(M*/9) quadratures are needed for a
radial transform if the dealiasing is used. In our computation
on CRAY €90, for which the matrix multiplication is particu-
larly fast, the radial transform takes only 1.1 times the azimuthal
FFT for M = 64, 1.2 times for M = 128, and 1.4 times for
M = 256. However, for larger M, the fast transform [15] be-
comes more efficient and its application should be considered.

MATSUSHIMA AND MARCUS

6. CONCLUSION

Our polynomial basis functions coupled with Fourier modes
in the azimuthal direction form an orthogonal basis set on the
unit disk in polar coordinates. They satisfy the pole conditions
exactly, converge spectrally to a €™ function and satisfy the
stable recurrence relations for #%, r(d # dr), the inverse of r(d/
dr) and the Helmholtz operator. The inverses of r? and the
Helmholtz operator can be computed efficiently and stably by
solving these recurrence relations in matrix form. There is some
arbitrariness in the parameters « and 8 and our numerical
experiments suggest that 8 should be chosen according to the
physical dimension of the problem. It is also suggested that
« = 1 gives a better result than & = 4. In time dependent
problems our representation is not suff at the pole and does
not suffer from any significant time step restriction. The ineffi-
cieitcy of the matrix transform is a minor problem for moderate
size of M. Unlike the representation of Robert and Merilees
which becomes ill-conditioned for M = 25 [3], our representa-
tion s well-conditioned for large M.

We acknowledge the support of DARPA and NSF Grants
AST-91-19766, CTS5-89-06343 and NASA Award NAGW-
2986, We have carried out our computation at the National
Center for Atmospheric Research and the San Diego Supercom-
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